
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 1

Critical Systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 2

Objectives

● To explain what is meant by a critical system
where system failure can have severe
human or economic consequence.

● To explain four dimensions of dependability -
availability, reliability, safety and security.

● To explain that, to achieve dependability,
you need to avoid mistakes, detect and
remove errors and limit damage caused by
failure.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 3

Topics covered

● A simple safety-critical system

● System dependability

● Availability and reliability

● Safety

● Security

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 4

Critical Systems

● Safety-critical systems
• Failure results in loss of life, injury or damage to the

environment;

• Chemical plant protection system;

● Mission-critical systems
• Failure results in failure of some goal-directed activity;

• Spacecraft navigation system;

● Business-critical systems
• Failure results in high economic losses;

• Customer accounting system in a bank;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 5

System dependability

● For critical systems, it is usually the case that the
most important system property is the dependability
of the system.

● The dependability of a system reflects the user’s
degree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use.

● Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be
useful.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 6

Importance of dependability

● Systems that are not dependable and are
unreliable, unsafe or insecure may be
rejected by their users.

● The costs of system failure may be very
high.

● Undependable systems may cause
information loss with a high consequent
recovery cost.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 7

A software-controlled insulin pump

● Used by diabetics to simulate the function of
the pancreas which manufactures insulin, an
essential hormone that metabolises blood
glucose.

● Measures blood glucose (sugar) using a
micro-sensor and computes the insulin dose
required to metabolise the glucose.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 8

Insulin pump organisation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 9

Insulin pump data-flow

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 10

Dependability requirements

● The system shall be available to deliver
insulin when required to do so.

● The system shall perform reliability and
deliver the correct amount of insulin to
counteract the current level of blood sugar.

● The essential safety requirement is that
excessive doses of insulin should never be
delivered as this is potentially life
threatening.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 11

Dependability

● The dependability of a system equates to its
trustworthiness.

● A dependable system is a system that is
trusted by its users.

● Principal dimensions of dependability are:
• Availability;
• Reliability;
• Safety;
• Security

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 12

Dimensions of dependability

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 13

Other dependability properties

● Repairability
• Reflects the extent to which the system can be repaired in

the event of a failure

● Maintainability
• Reflects the extent to which the system can be adapted to

new requirements;

● Survivability
• Reflects the extent to which the system can deliver

services whilst under hostile attack;

● Error tolerance
• Reflects the extent to which user input errors can be

avoided and tolerated.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 14

Maintainability

● A system attribute that is concerned with the ease of
repairing the system after a failure has been
discovered or changing the system to include new
features

● Very important for critical systems as faults are often
introduced into a system because of maintenance
problems

● Maintainability is distinct from other dimensions of
dependability because it is a static and not a
dynamic system attribute. I do not cover it in this
course.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 15

Survivability

● The ability of a system to continue to deliver
its services to users in the face of deliberate
or accidental attack

● This is an increasingly important attribute for
distributed systems whose security can be
compromised

● Survivability subsumes the notion of
resilience - the ability of a system to continue
in operation in spite of component failures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 16

Dependability vs performance

● Untrustworthy systems may be rejected by their
users

● System failure costs may be very high

● It is very difficult to tune systems to make them more
dependable

● It may be possible to compensate for poor
performance

● Untrustworthy systems may cause loss of valuable
information

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 17

Dependability costs

● Dependability costs tend to increase exponentially
as increasing levels of dependability are required

● There are two reasons for this
• The use of more expensive development techniques and

hardware that are required to achieve the higher levels of
dependability

• The increased testing and system validation that is
required to convince the system client that the required
levels of dependability have been achieved

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 18

Costs of increasing dependability

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 19

Dependability economics

● Because of very high costs of dependability
achievement, it may be more cost effective
to accept untrustworthy systems and pay for
failure costs

● However, this depends on social and political
factors. A reputation for products that can’t
be trusted may lose future business

● Depends on system type - for business
systems in particular, modest levels of
dependability may be adequate

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 20

Availability and reliability

● Reliability
• The probability of failure-free system operation

over a specified time in a given environment for
a given purpose

● Availability
• The probability that a system, at a point in time,

will be operational and able to deliver the
requested services

● Both of these attributes can be expressed
quantitatively

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 21

Availability and reliability

● It is sometimes possible to subsume system
availability under system reliability
• Obviously if a system is unavailable it is not

delivering the specified system services

● However, it is possible to have systems with
low reliability that must be available. So long
as system failures can be repaired quickly
and do not damage data, low reliability may
not be a problem

● Availability takes repair time into account

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 22

Reliability terminology

Term Description
System failure An event that occurs at some point in time when

the system does not deliver a service as expected
by its users

System error An erroneous system state that can lead to system
behaviour that is unexpected by system users.

System fault A characteristic of a software system that can
lead to a system error. For example, failure to
initialise a variable could lead to that variable
having the wrong value when it is used.

Human error or
mistake

Human behaviour that results in the introduction
of faults into a system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 23

Faults and failures

● Failures are a usually a result of system errors that
are derived from faults in the system

● However, faults do not necessarily result in system
errors
• The faulty system state may be transient and ‘corrected’

before an error arises

● Errors do not necessarily lead to system failures
• The error can be corrected by built-in error detection and

recovery
• The failure can be protected against by built-in protection

facilities. These may, for example, protect system
resources from system errors

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 24

Perceptions of reliability

● The formal definition of reliability does not always
reflect the user’s perception of a system’s reliability
• The assumptions that are made about the environment

where a system will be used may be incorrect
• Usage of a system in an office environment is likely to be

quite different from usage of the same system in a university
environment

• The consequences of system failures affects the
perception of reliability
• Unreliable windscreen wipers in a car may be irrelevant in a

dry climate
• Failures that have serious consequences (such as an engine

breakdown in a car) are given greater weight by users than
failures that are inconvenient

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 25

Reliability achievement

● Fault avoidance
• Development technique are used that either minimise the

possibility of mistakes or trap mistakes before they result
in the introduction of system faults

● Fault detection and removal
• Verification and validation techniques that increase the

probability of detecting and correcting errors before the
system goes into service are used

● Fault tolerance
• Run-time techniques are used to ensure that system

faults do not result in system errors and/or that system
errors do not lead to system failures

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 26

Reliability modelling

● You can model a system as an input-output
mapping where some inputs will result in
erroneous outputs

● The reliability of the system is the probability
that a particular input will lie in the set of
inputs that cause erroneous outputs

● Different people will use the system in
different ways so this probability is not a
static system attribute but depends on the
system’s environment

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 27

Input/output mapping

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 28

Reliability perception

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 29

Reliability improvement

● Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study at
IBM showed that removing 60% of product defects
resulted in a 3% improvement in reliability

● Program defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceived
reliability

● A program with known faults may therefore still be
seen as reliable by its users

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 30

Safety

● Safety is a property of a system that reflects the
system’s ability to operate, normally or abnormally,
without danger of causing human injury or death and
without damage to the system’s environment

● It is increasingly important to consider software
safety as more and more devices incorporate
software-based control systems

● Safety requirements are exclusive requirements i.e.
they exclude undesirable situations rather than
specify required system services

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 31

● Primary safety-critical systems
• Embedded software systems whose failure can cause the

associated hardware to fail and directly threaten people.

● Secondary safety-critical systems
• Systems whose failure results in faults in other systems

which can threaten people

● Discussion here focuses on primary safety-critical
systems
• Secondary safety-critical systems can only be considered

on a one-off basis

Safety criticality

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 32

● Safety and reliability are related but distinct
• In general, reliability and availability are

necessary but not sufficient conditions for
system safety

● Reliability is concerned with conformance to
a given specification and delivery of service

● Safety is concerned with ensuring system
cannot cause damage irrespective of
whether
or not it conforms to its specification

Safety and reliability

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 33

● Specification errors
• If the system specification is incorrect then the

system can behave as specified but still cause
an accident

● Hardware failures generating spurious inputs
• Hard to anticipate in the specification

● Context-sensitive commands i.e. issuing the
right command at the wrong time
• Often the result of operator error

Unsafe reliable systems

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 34

Safety terminology

Term Definition
Accident (or
mishap)

An unplanned event or sequence of events which results in human death or injury,
damage to property or to the environment. A computer-controlled machine injuring its
operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an accident. A failure of
the sensor that detects an obstacle in front of a machine is an example of a hazard.

Damage A measure of the loss resulting from a mishap. Damage can range from many people
killed as a result of an accident to minor injury or property damage.

Hazard
severity

An assessment of the worst possible damage that could result from a particular
hazard. Hazard severity can range from catastrophic where many people are killed to
minor where only minor damage results.

Hazard
probability

The probability of the events occurring which create a hazard. Probability values tend
to be arbitrary but range from probable (say 1/100 chance of a hazard occurring) to
implausible (no conceivable situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an accident. The risk is
assessed by considering the hazard probability, the hazard severity and the probability
that a hazard will result in an accident.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 35

Safety achievement

● Hazard avoidance
• The system is designed so that some classes of hazard

simply cannot arise.

● Hazard detection and removal
• The system is designed so that hazards are detected and

removed before they result in an accident

● Damage limitation
• The system includes protection features that minimise the

damage that may result from an accident

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 36

Normal accidents

● Accidents in complex systems rarely have a single
cause as these systems are designed to be resilient
to a single point of failure
• Designing systems so that a single point of failure does

not cause an accident is a fundamental principle of safe
systems design

● Almost all accidents are a result of combinations of
malfunctions

● It is probably the case that anticipating all problem
combinations, especially, in software controlled
systems is impossible so achieving complete safety
is impossible

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 37

Security

● The security of a system is a system
property that reflects the system’s ability to
protect itself from accidental or deliberate
external attack

● Security is becoming increasingly important
as systems are networked so that external
access to the system through the Internet is
possible

● Security is an essential pre-requisite for
availability, reliability and safety

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 38

Fundamental security

● If a system is a networked system and is
insecure then statements about its reliability
and its safety are unreliable

● These statements depend on the executing
system and the developed system being the
same. However, intrusion can change the
executing system and/or its data

● Therefore, the reliability and safety
assurance is no longer valid

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 39

Security terminology

Term Definition
Exposure Possible loss or harm in a computing system. This can be loss or

damage to data or can be a loss of time and effort if recovery is
necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to
cause loss or harm.

Attack An exploitation of a system vulnerability. Generally, this is from
outside the system and is a deliberate attempt to cause some damage.

Threats Circumstances that have potential to cause loss or harm. You can
think of these as a system vulnerability that is subjected to an attack.

Control A protective measure that reduces a system vulnerability. Encryption
would be an example of a control that reduced a vulnerability of a
weak access control system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 40

Damage from insecurity

● Denial of service
• The system is forced into a state where normal services

are unavailable or where service provision is significantly
degraded

● Corruption of programs or data
• The programs or data in the system may be modified in

an unauthorised way

● Disclosure of confidential information
• Information that is managed by the system may be

exposed to people who are not authorised to read or use
that information

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 41

Security assurance

● Vulnerability avoidance
• The system is designed so that vulnerabilities do not

occur. For example, if there is no external network
connection then external attack is impossible

● Attack detection and elimination
• The system is designed so that attacks on vulnerabilities

are detected and neutralised before they result in an
exposure. For example, virus checkers find and remove
viruses before they infect a system

● Exposure limitation
• The system is designed so that the adverse

consequences of a successful attack are minimised. For
example, a backup policy allows damaged information to
be restored

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 42

Key points

● A critical system is a system where failure can lead
to high economic loss, physical damage or threats to
life.

● The dependability in a system reflects the user’s
trust in that system

● The availability of a system is the probability that it
will be available to deliver services when requested

● The reliability of a system is the probability that
system services will be delivered as specified

● Reliability and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 3 Slide 43

Key points

● Reliability is related to the probability of an error
occurring in operational use. A system with known
faults may be reliable

● Safety is a system attribute that reflects the system’s
ability to operate without threatening people or the
environment

● Security is a system attribute that reflects the
system’s ability to protect itself from external attack

● Dependability improvement requires a socio-
technical approach to design where you consider the
humans as well as the hardware and software

